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Abstract
We consider the propagation of electromagnetic waves in an optical device
known as a ‘directional coupler’, which is widely used in telecommunication
systems. This device consists of a pair of dielectric waveguides in close
proximity. Such waveguides are strongly coupled and there is energy transfer
between the waveguides.

The propagation of light in such waveguides is paraxial and can
be described by a parabolic differential equation closely resembling the
Schrödinger equation for motion of a quantum particle in a two-dimensional
time-dependent potential well. We exploit the quantum mechanical analogue
of the optical system to write the propagator describing paraxial propagation
as a path integral over optical paths.

We use the Feynman–Kleinert variational procedure to calculate
approximate expressions for the propagation constant and the field profile of the
lowest-order mode of the waveguiding system. An approximate expression for
the beat length of the system is also calculated in the case where the waveguides
are strongly coupled. The results are found to be in better agreement with other
theoretical calculations than are the results of a previous variational calculation.

PACS numbers: 42.79.Gn, 02.60.-x, 31.15.Kb, 31.15.Pf

1. Introduction

Fibre-optic and integrated optical devices are widely used in telecommunication systems and
consist of a large number of interconnected dielectric waveguide sections. An important
waveguide structure in such a device is a pair of dielectric waveguides in close proximity
forming what is known as a ‘directional coupler’. A simple directional coupler consisting of
parallel waveguide sections is illustrated in figure 1. Such waveguides may be strongly coupled
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Figure 1. A directional coupler consisting of a pair of parallel
waveguide sections is a typical waveguide structure encountered in
integrated optics.

so that there is energy transfer between the waveguides [1]. The close proximity of the two
parallel waveguides illustrated in figure 1 produces strong coupling, the effect of which is to
produce a periodic variation of intensity along each guide. This periodic intensity variation
is usually thought of as a beat phenomenon, and the distance measured in the direction of
propagation over which a period of this variation occurs is known as the beat length of the
system [2]. A complete description of the propagation in such a structure should include a
calculation of the propagation constants and field profiles of the modes that are supported by
the system.

The exchange of power between two waveguides in close proximity has useful applications
relating to modulators, switches and signal processing [3]. The importance of a waveguide
structure similar to that illustrated in figure 1 has led to a large number of theoretical techniques
being applied to the study of such guiding systems.

A numerical technique that is widely used to study the propagation of light in the
complicated waveguide structures that are encountered in integrated optics is the beam
propagation method [4,5] in which the propagating fields are decomposed into guided modes
and the propagation of each mode is considered by solving an approximate version of the wave
equation. The beam propagation method has been applied to the study of integrated optical
coupling structures, including directional couplers, with a large degree of success [5, 6]. The
calculations in [6] are only applicable in the adiabatic limit, in which the refractive index of
the waveguiding system varies slowly with position on the scale of a typical wavelength of
the propagating light. The advanced beam propagation method presented in [5] overcomes
this limitation by including a full description of the coupling between the transverse and axial
components of the propagating fields.

Another theoretical technique which has been applied to the study of propagation in parallel
waveguide structures is the so-called coupled mode theory [2, 7]. This latter theory develops
a set of coupled wave equations which relate the fields of the guided modes of one fibre to
the fields of the guided modes of another fibre, which is coupled to the first because of its
close proximity. By considering the propagation of single modes in each fibre it is possible to
obtain expressions describing the periodic exchange of energy between two parallel guides [7].
Expressions for the field profiles and propagation constants of the modes supported by the
system can also be obtained using this theory [2, 8].

A number of assumptions are conventionally made in the study of systems via the
coupled mode theory, but it has been shown by Hardy and Streifer [3] that these assumptions
are not always valid. The results of conventional coupled mode theory are only accurate
when the guides are nearly identical and are weakly coupled. This is due to the fact
that the conventional theory ignores the overlap between the guided modes in the two
fibres [3]. The paper by Hardy and Streifer [3] develops a new coupled mode formulation
for the case of parallel waveguides by including the terms that are ignored in conventional
theories, which is shown to give more accurate values for the propagation constants of the
waveguide system and which is also suitable to be applied to more general systems of coupled
waveguides.
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The technique used here to formulate the problem of optical propagation in a coupled
fibre-optic waveguide system is that of path integration, which was developed by Feynman
to describe propagation of particles in a quantum mechanical system [9]. This technique has
been used previously to study optical waveguides, in particular those structures of importance
in integrated optics, by a number of authors and with considerable success (see [10–12] and
references therein).

Propagation of light in the waveguides that are most suited to telecommunication
systems is paraxial such that the wavefronts of the propagating electromagnetic wave are
approximately planar [1]. Paraxial propagation of light in a dielectric fibre-optic waveguide
can be described by a parabolic differential equation closely resembling the Schrödinger
equation for motion of a quantum particle in a two-dimensional time-dependent potential
well [13]. In order to construct the differential equation describing paraxial propagation
in a waveguide structure, the refractive index distribution within the waveguides must be
modelled in a physically realistic way. The conditions under which this description of
optical propagation is applicable are particularly relevant to the waveguides that are used
in fibre-optic devices because the refractive index of these waveguides varies slowly with
position.

Feynman and Hibbs [9] showed that the propagator describing propagation in quantum
mechanics can be written elegantly as a sum of terms, each of which describes propagation
along a particular path in spacetime. The mathematical formulation of this sum over paths is
referred to as a path integral. By exploiting the quantum mechanical analogue of the optical
system, it is possible to write the propagator describing paraxial propagation as a sum of terms,
each of which describes propagation along an optical path [11].

Describing optical propagation in waveguiding structures by means of a propagator written
in terms of a path integral is fundamentally different from the other theoretical methods
described above and there is an important distinction between the path integral method of
studying optical propagation and the other theoretical techniques described above. The
common starting point of the more conventional theoretical techniques is propagation in
uncoupled waveguides which are separated by an infinite distance. The advantage of the path
integral approach is that a propagator provides a global picture of propagation by describing the
behaviour of all of the modes supported by the system simultaneously, which is fundamentally
different from the approach of the other theoretical methods described earlier. As with quantum
mechanics, the use of path integrals in optical propagation provides a new way of thinking
about the problem and suggests new methods of solution.

In this paper, an existing sophisticated variational procedure due to Feynman and
Kleinert [13,14], which is an extension of Feynman’s original variational principle [9], is used to
study the problem of propagation in the system consisting of two parallel coupled waveguides
illustrated in figure 1. The parallel coupled waveguide system has been studied previously
using a variational procedure developed by Constantinou and Jones [12]. This work follows
and extends the previous calculations in [12] with a number of significant improvements. The
variational procedure used in [12] was based on Feynman’s original variational procedure [9].
However, this has been shown not to give good estimates for the energy levels of a quantum
system under some circumstances [13].

The new variational procedure is shown to provide a better variational bound for
the lowest-order propagation constant than the result of the calculation in [12]. It also
predicts a definite distinction between the cases of strongly and weakly coupled waveguides
and is able to make new predictions about the intermediate regime, which has previously
proved inaccessible. An approximate propagator can be calculated using the variational
procedure. From this propagator, the field profiles of the lowest-order and first excited
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Figure 2. A typical fibre-optic guide, showing coordinate axes. The guide axis is chosen to coincide
with the z-axis.

modes can be obtained in the strongly and weakly coupled limits. These field profiles are
found to be more physically appealing than those calculated previously using a variational
procedure [12].

The importance of analytical work such as that described in this paper is that it provides
approximate but accurate analytical results which can be used to guide further experimental
and numerical work on the design of integrated optical devices.

In section 2 we outline the basic formalism used in the calculation and in section 3 we
describe in detail the variational procedure developed by Feynman and Kleinert [14] and used
in this paper. Section 4 applies the variational technique to the coupled waveguide system,
and in sections 5–7 we use the results obtained in the previous section to calculate quantities
which are of interest in engineering. In section 5 we calculate approximate expressions for the
propagation constant of the lowest-order mode of the system, in section 6 the field profile of
the lowest-order mode of the system is calculated and in section 7 we estimate the propagation
constants of the higher-order modes of the system and calculate the beat length of the parallel
coupled waveguide system.

2. Formulation of problem

The technique used here to formulate the problem of optical propagation in a coupled fibre-optic
waveguide system is that of path integration, which was developed by Feynman to describe
propagation of particles in a quantum mechanical system [9]. In this section it will be shown
that under certain conditions the optical propagation in a fibre-optic waveguide, such as that
illustrated in figure 2, can be described by a path integral. For convenience the guide axis is
chosen to coincide with the z-axis of the Cartesian coordinate system shown in figure 2.

By considering the propagation of a monochromatic electromagnetic wave in a weakly
inhomogeneous dielectric medium in which the refractive index varies slowly with position on
a scale of a typical wavelength of the propagating light, it can be shown that the wave equation
for the Cartesian components of the electric or magnetic fields can be written in the form [7]

∇2φ − ε(x, y, z)µ0
∂2φ

∂t2
≈ 0 (1)

where φ(x, y, z, t) is one of the Cartesian components of the electric or magnetic field and
ε(x, y, z) is the spatially varying permittivity of the medium.

Propagation of light in the waveguides that are most suited to telecommunication systems
is paraxial such that the wavefronts of the propagating waves are approximately planar [1].
The general form of the refractive index in a fibre-optic waveguide means that the refractive
index n(x, y, z) can be expressed in the form [2]

n(x, y, z) = n0
[
1 − n′(x, y, z)

]
(2)
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where n′(x, y, z) is a smooth continuous function of position describing the spatial variation
of the refractive index from its maximum value and will be referred to as the ‘refractive index
inhomogeneity function’ [10]. The ‘slowly varying envelope approximation’ [5] is now used
to obtain the form of equation (1) which is applicable to paraxial propagation. This is done by
writing φ(x, y, z, t) as

φ(x, y, z, t) = f (x, y, z) exp {i(kz− ωt)} (3)

where f (x, y, z) is a slowly varying function of z on a scale of 1/k. The quantity k in
equation (3) is the maximum value of the wavenumber in the medium and is given by k ≡ k0n0

in terms of the free-space wavenumber k0. Using equation (1), it can be shown [10] that
f (x, y, z) satisfies

− 1

2k2

(
∂2

∂x2
+
∂2

∂y2

)
f (x, y, z) + n′(x, y, z) f (x, y, z) = i

k

∂

∂z
f (x, y, z). (4)

The parabolic differential equation given in equation (4) closely resembles the Schrödinger
equation for motion of a quantum particle in a two-dimensional time-dependent potential well:

− h̄
2

2m

(
∂2

∂x2
+
∂2

∂y2

)
ψ(x, y, t) + V (x, y, t) ψ(x, y, t) = ih̄

∂

∂t
ψ(x, y, t). (5)

Feynman and Hibbs [9] showed that the propagator describing propagation in quantum
mechanics can be written elegantly as a sum of terms, each of which describes propagation
along a particular path in spacetime. By exploiting the quantum mechanical analogue of
the optical system it is possible to write the propagator describing paraxial propagation as
a sum of terms, each of which describes propagation along an optical path [11]. Using the
analogies between paraxial optical propagation and quantum mechanical propagation, the
‘optical propagator’ can be written as a Feynman path integral [13]

K(xb, yb, zb; xa, ya, za) =
∫ (xb,yb,zb)

(xa,ya,za)

Dx(z)Dy(z) exp
{
ik Sa,b [x(z), y(z)]

}
(6)

for zb > za , and we have used the standard quantum mechanical notation for such objects.
The quantity Sa,b [x(z), y(z)] in equation (6) is defined by

Sa,b [x(z), y(z)] =
∫ zb

za

dz

{
1

2

(
dx

dz

)2

+
1

2

(
dy

dz

)2

− n′(x, y, z)

}
(7)

and will be referred to as the ‘optical action’. The propagator defined by equation (6) describes
the propagation of the quantity f (x, y, z). It can be seen that the propagation of the Cartesian
components of the physically relevant electric and magnetic fields of the light propagating
in the waveguide system, which are related to f (x, y, z) by equation (3), is described by the
modified propagator

K̃(xb, yb, zb; xa, ya, za) =
∫ (xb,yb,zb)

(xa,ya,za)

Dx(z)Dy(z) exp
{
ik S̃a,b [x(z), y(z)]

}
(8)

where

S̃a,b [x(z), y(z)] = (zb − za) + Sa,b [x(z), y(z)] (9)

and in the paraxial approximation for the refractive index given in equation (2), is proportional
to the optical path length [7, 15].

In order to construct the propagator describing paraxial propagation in a waveguide
structure, the refractive index distribution within the waveguides must be modelled in a
physically realistic way.
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This paper describes the use of a sophisticated variational technique [13, 14] to calculate
approximate expressions for the propagation constants and modal field profiles of the modes
supported by the system consisting of two parallel coupled waveguides. The results are
compared with those of a previous variational calculation by Constantinou and Jones [12]
which made use of a less sophisticated variational procedure based on Feynman’s original
variational technique [9].

The refractive index distribution used both here and by Constantinou and Jones [12] to
model the system consisting of two parallel coupled waveguides is given by

n(x, y, z) = n0
[
1 − a4

(
x2 − b2

)2 − 1
2ω

2
yy

2
]

(10)

where a, b and ωy are constants. Figure 3 compares the variation in the x-direction of this
choice of model refractive index with the expected distribution to be found in the real fibre
system. The distribution was chosen to resemble the physical reality of the system as closely as
possible as shown in figure 3. The model refractive index distribution given by equation (10)
is suitable for modelling the situation when the waveguides are close together and far apart
because of the local minimum in the distribution at x = 0. The depth of this minimum,
measured from n0, is n0a

4b4. When the separation of the two guides is small compared with
their width, there is significant overlap of the fields centred on each guide and the guides are
strongly coupled. This is taken into account by the model distribution because, in this situation,
b is small and the local minimum is very shallow. When the separation of the guides is large
compared with their width, there is negligible overlap of the fields centred on each guide and
the guides are weakly coupled. In this situation, b is large and the local minimum is very deep.
The model refractive index distribution given by equation (10) is also suitable for modelling
the refractive index distribution found in an integrated optical device consisting of two parallel
waveguides. Such waveguides are formed on a single dielectric substrate using the technique
of metal in-diffusion [1]. This process produces a refractive index which varies smoothly in
the x-direction, with the refractive index between the two waveguides closely resembling the
shape of the local minimum at x = 0 of the model distribution given by equation (10).

Using the forms of the propagator given in equation (6) and the refractive index distribution
of equation (10), the two-dimensional propagator in equation (6) separates into the product of
two one-dimensional propagators. The resulting one-dimensional propagator, which depends
on the x-coordinate, is given by

Kx(xb, zb; xa, za) =
∫ (xb,zb)

(xa,za)

Dx(z) exp

{
ik
∫ zb

za

dz

[
1

2

(
dx

dz

)2

− n′
x(x, z)

]}
(11)

where n′
x(x, z) is the part of the refractive index inhomogeneity function which depends on the

x-coordinate, and will be referred to as the ‘partial refractive index inhomogeneity function’.
For the case of the model distribution described by equation (10), n′

x(x, z) is independent of
the z-coordinate and is given by

n′
x(x, z) ≡ V (x) = a4

(
x2 − b2

)2
. (12)

As in the quantum mechanical case, the propagator given by equation (8) for the system
with the refractive index distribution given by equation (10) can be expanded in terms of the
eigenfunctions and eigenvalues of the system as [9]

K̃(xb, yb, zb; xa, ya, za) =
∞∑
n=0

∞∑
m=0

ϕn,m(xb, yb) ϕ
∗
n,m(xa, ya) exp

{
iβn,m (zb − za)

}
(13)

for zb > za , where ϕn,m(x, y) is the mode field profile and βn,m is the propagation constant of
the mode of the system labelled by (n,m) [7]. For the two-dimensional propagator given
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Figure 3. The refractive index profile n(x, y, z) for y = 0 and arbitrary fixed z of two parallel
waveguides. The dotted curve shows the model distribution given in equation (10), with n0 ≡ ncore,
and the solid curve shows the schematic refractive index distribution across two parallel guides.

by equation (6), the expression for K̃ separates into the product of two one-dimensional
propagators having the field profiles ϕxn(x) and ϕym(y) and propagation constants βxn and βym so
that

K̃(xb, yb, zb; xa, ya, za) =
∞∑
n=0

∞∑
m=0

ϕxn(xb) ϕ
y
m(yb) ϕ

x∗
n (xa) ϕ

y∗
m (ya)

× exp
{
i
[
k − βxn − βym

]
(zb − za)

}
(14)

for zb > za . The propagator given by equation (11) can be similarly expanded in terms of the
partial mode field profiles ϕxn(x) and partial propagation constants βxn of the one-dimensional
system as [9]

Kx(xb, zb; xa, za) =
∞∑
n=0

ϕxn(xb) ϕ
x∗
n (xa) exp

{−iβxn (zb − za)
}

(15)

for zb > za . In the analogous quantum mechanical problem, βxn would be the energy levels
and ϕxn(x) would be the corresponding wavefunctions.

In the previous coupled waveguide variational calculation by Constantinou and Jones [12],
the y-dependence of the system is omitted so that the mode field profile and the propagation
constant of the mode labelled by (n,m) become

ϕn(x) ≡ ϕn,m(x, y) = ϕxn(x) with βn ≡ βn,m = k − βxn (16)

which latter are the eigenfunctions and ‘eigenvalues’ used in equation (15).

3. Variational procedure

In the paper by Feynman and Kleinert [14], a variational procedure is developed and used to
accurately calculate the free energy of a quantum system as a function of temperature. From
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this free energy, it is possible to calculate an approximate value for the ground state energy of the
quantum system. Using the analogies between the quantum mechanical problem and the optical
problem outlined in section 2, it can be seen that the partial propagation constant βxn defined
by equation (15) corresponds to En/h̄, where En is the energy level of the analogous quantum
mechanical system. This means that the variational procedure developed by Feynman and
Kleinert [14] can also be used to obtain an approximation for the partial propagation constant
βxn of the optical system. In this section the variational procedure of [14] will be formulated
in terms of the parameters of the optical problem.

The starting point for the calculation is the one-dimensional propagator Kx(xb, zb; xa, za)
given by equation (11). For a system with a refractive index distribution which does not depend
on z explicitly (which is the case for the system with the refractive index distribution given
by equation (10)), the propagator Kx(xb, zb; xa, za) depends only on the difference (zb − za),
so that Kx(xb, zb; xa, za) = Kx(xb, zb − za; xa, 0). By analogy with the quantum mechanical
problem [9], the quantity (zb − za) in the propagator is replaced by −iµ/k, whereµ is real and
will be referred to as the ‘imaginary propagation distance’ of the problem. Using this imaginary
propagation distance, a quantity Z is defined in terms of the one-dimensional propagator Kx
by the equation

Z ≡
∫

dxa Kx(xa,−iµ; xa, 0) (17)

which uses units with k = 1. The quantity Z is the analogue, for the optical system, of the
partition function of the analogous quantum mechanical problem [13]. It will be referred to as
the optical partition function. From the path integral representation of the propagator Kx given
by equation (11) and for the case where the partial refractive index inhomogeneity function
n′
x(x, z) is independent of z, and can be written as n′

x(x, z) ≡ V (x), the optical partition
function Z can be expressed as [13]

Z ≡
∮

Dx(ζ ) exp

{
−
∫ µ

0
dζ
[

1
2 ẋ

2(ζ ) + V
(
x(ζ )

)]}
(18)

where ẋ(ζ ) ≡ dx(ζ )/dζ and the path integral represented by
∮ Dx(ζ ) . . . is an integral over all

paths which start and finish at the same value of the x-coordinate, and includes an integration
over this end-point, as shown in equation (17). The integral

∫ µ
0 dζ

[
1
2 ẋ

2(ζ ) + V
(
x(ζ )

)]
in

equation (18) will be called the optical Euclidean action since it is the Euclidean action in the
analogous quantum mechanical system [13]. The path integral of equation (18) is most easily
handled if the paths x(ζ ) in the path integral are written as a Fourier series [13]. We denote
the zero-frequency Fourier component, which measures the average of x(ζ ), by x0.

In the limit µ → +∞ the integrations with respect to the nonzero frequency Fourier
components in the optical partition function (18) can be evaluated with the result that [13]

Z−−−−→
µ→+∞

∫ +∞

−∞

dx0√
2πµ

e−µV (x0) (19)

which is the ray optics limit of the optical partition function.
If the integrations with respect to the nonzero frequency Fourier components in the optical

partition function (18) could be evaluated for any value of µ, the resulting expression for Z
would be a single integral over the Fourier (average) component x0 of the form [14]

Z =
∫ +∞

−∞

dx0√
2πµ

e−µW(x0). (20)

In the context of statistical mechanics the function W(x0) is conventionally referred to as an
effective classical potential [14]. Here, in the context of ray optics, W(x0) is an effective
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partial refractive index inhomogeneity function since equation (20) has the same form as the
ray optics limit of the optical partition function given by equation (19). W(x0) can be thought
of as the partial refractive index inhomogeneity function which when used in the ray optics
description of the problem (with a ray path for which

∫ µ
0 dζ x(ζ ) = µx0) provides the same

values for the physical quantities as the wave optics description of the problem. We shall refer
toW(x0) as the effective refractive index.

An upper bound forW(x0) can be calculated by introducing a trial optical partition function
in which that part of the partial refractive index inhomogeneity functionV (x) depending on the
nonzero frequency Fourier components is replaced by a quadratic function whose maximum
is at x0 and whose curvature depends on x0. Such a trial optical partition function is given by

Z(1) =
∮

Dx(ζ ) exp

{
−
∫ µ

0
dζ
[

1
2 ẋ

2(ζ ) + 1
2 

2(x0) [x(ζ )− x0]2 ]− µL(1)(x0)

}
(21)

where  (x0) is an arbitrary local curvature of the partial refractive index inhomogeneity
function andL(1)(x0) is a part of the partial refractive index inhomogeneity function depending
only on the average coordinate x0.

By analogy with equation (20), Z(1) can be written as [14]

Z(1) =
∫ +∞

−∞

dx0√
2πµ

exp
{− µW̃ (1)

(
x0, a

2(x0), (x0)
)}

(22)

where the function W̃ (1)
(
x0, a

2,  
)

is determined by optimizing Z(1) with respect to  (x0)

and L(1)(x0). Some algebra shows that

W̃ (1)
(
x0, a

2,  
) = 1

µ
ln

[
sinh (µ /2)

µ /2

]
− 1

2
 2a2 + Va2(x0) (23)

where

Va2(x0)(x) ≡
∫ +∞

−∞

dx ′(
2πa2(x0)

)1/2 exp

{
− 1

2a2(x0)

(
x − x ′)2}V (x ′) . (24)

We see that Va2(x) is a kind of smeared version of the partial refractive index inhomogeneity
function V (x), as described by Feynman and Kleinert [14]; the smearing width a(x0) is given
by

a2(x0) = 1

µ 2(x0)

[
µ (x0)

2
coth

(
µ (x0)

2

)
− 1

]
. (25)

Using equation (23) and the Jensen–Peierls variational inequality [13] we find that

W(x0) < W̃
(1)
(
x0, a

2(x0), (x0)
)

(26)

so that W(x0) is bounded from above locally by W̃ (1)
(
x0, a

2(x0), (x0)
)
. This bound can be

optimized by minimizing W̃ (1)
(
x0, a

2(x0), (x0)
)

with respect to the parameters a2(x0) and
 (x0), yielding a minimum valueW(1)(x0) given by

W(1)(x0) = min
a2(x0), (x0)

{
W̃ (1)

(
x0, a

2(x0), (x0)
)}
. (27)

The minimization indicated in equation (27) is carried out subject to the condition that a2(x0)

and  (x0) are related by equation (25) and leads to a second equation relating a2(x0) and
 (x0) of the form

 2(x0) = 2
∂

∂a2
Va2(x0) = ∂2

∂x2
0

Va2(x0) . (28)
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From this we see that

W(1)(x0) = W̃ (1)
(
x0, a

2
min(x0), min(x0)

)
(29)

where a2
min(x0) and  min(x0) satisfy equations (25) and (28) for each value of x0.

An approximation to the partial propagation constant of the lowest-order mode βx0 of
the optical system can be obtained from the approximate effective refractive index W(1)(x0)

in a way which is analogous to that described by Feynman and Kleinert [14]. Using the
expansion of the propagator Kx(xb, zb; xa, za) in terms of partial mode field profiles ϕxn(x)
and partial propagation constants βxn given by equation (15), and the expression for Z given
by equation (17), it can be seen that the optical partition function Z can be written as

Z =
∞∑
i=0

exp
{− µβxi

}
(30)

since the partial mode field profiles can be chosen to be an orthonormal set.
If the partial propagation constants

{
βxn
}

(n = 0, 1, . . .) are ordered so thatβx0 < β
x
1 < · · ·,

then when we take the limit µ → +∞ of the optical partition function in equation (30) we find
that the partial propagation constant, βx0 , of the lowest-order mode is determined by

lim
µ→+∞Z = exp

{−µβx0 } (31)

so that an approximation to the lowest-order mode partial propagation constantβx(1)0 is obtained
by minimizing the functionW(1)(x) with respect to x in the limit µ → +∞. We find that [14]

β
x (1)
0 = min

x

{
lim
µ→+∞W

(1)(x)
} = min

x

{
Va2

min(x)
(x) +

1

8a2
min(x)

}
. (32)

In the limit µ → +∞ the approximate effective refractive index becomes

lim
µ→+∞W

(1)(x) = Va2
min(x)

(x) +
1

8a2
min(x)

(33)

with a2
min(x) determined by combining equations (25) and (28) in the limit µ → +∞. This

implies that the approximation to the lowest-order mode partial propagation constant βx (1)0
given by equation (32) is

β
x (1)
0 = min

x

{
Va2

min(x)
(x) +

1

8a2
min(x)

}
. (34)

In sections 4 and 5 we apply the procedure described above to the system consisting of
two parallel coupled waveguides and use the result given by equation (34) to calculate an
approximate expression for the propagation constant of the lowest-order mode of the system.

It should also be noted that if we take the limitµ → 0+ the approximate effective refractive
index,W(1)(x), coincides with V (x) [13], so that

lim
µ→0+

W(1)(x) = V (x). (35)

However, we do not consider the significance of this result in any detail in this paper.
The variational procedure that has been described in this section is different from that

which has been used previously to study optical propagation in the parallel coupled waveguide
system by Constantinou and Jones [12]. Approximate expressions for the propagation
constant and field profile of the lowest-order mode of the parallel coupled waveguide system
were those found by calculating an approximate closed-form expression for the propagator
Kx(xb, zb; xa, za) using a trial propagator Ktrial

x (xb, zb; xa, za) which is of the form

Ktrial
x (xb, zb; xa, za) =

∫ (xb,zb)

(xa,za)

Dx exp

{
ik
∫ zb

za

[
1
2 ẋ

2 − 1
2c

2x2
]

dz

}
(36)
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and which involves one variational parameter c, the curvature of the trial partial refractive
index inhomogeneity function [12]. By writing the approximate expression for the propagator
Kx(xb, zb; xa, za) in terms of the imaginary propagation distance µ via zb − za = −iµ/k and
taking the limit µ → +∞, expressions for the propagation constant and field profile of the
lowest-order mode were obtained in terms of the variational parameter c. These expressions
were then optimized by performing variations with respect to the parameter c. This variational
procedure is expected to provide approximations which are less accurate than those obtained by
the variational procedure described above, based on the work of Feynman and Kleinert, since
only one variational parameter is used. In addition the form of the trial partial refractive index
inhomogeneity function that is used by Constantinou and Jones is only expected to provide
good approximations for strongly coupled waveguides [12] because, as discussed in section 1,
for the case of strong coupling the model refractive index given by equation (10) has a very
shallow minimum at x = 0 so that the partial refractive index inhomogeneity function V (x)
has a single minimum at x = 0 and is approximated well by a quadratic function.

4. Application to the parallel coupled waveguide system

The procedure described in section 3 will now be applied to the parallel coupled waveguide
system introduced previously.

The refractive index distribution of the parallel coupled waveguide system described in
section 2 is modelled by the distribution given by equation (10), with the partial refractive
index inhomogeneity function given by equation (12) as

V (x) = a4
(
x2 − b2

)2
. (37)

The smeared partial refractive index inhomogeneity function corresponding to the partial
refractive index inhomogeneity function V (x) is given by

Vα2(x) =
∫ +∞

−∞

dx ′(
2πα2

)1/2 exp

{
− 1

2α2

(
x − x ′)2}V (x ′). (38)

Substituting equation (37) into (38) gives

Vα2(x) = a4x4 + 2a4
(
3α2 − b2

)
x2 + a4

(
b4 + 3α4 − 2b2α2

)
. (39)

The approximate effective refractive index,W(1)(x), for this system is given by

W(1)(x0) = W̃ (1)
(
x0, α

2
min(x0), min(x0)

)
(40)

where

W̃ (1)
(
x0, α

2,  
) = 1

µ
ln

[
sinh (µ /2)

µ /2

]
− 1

2
 2α2 + Vα2(x0) . (41)

The quantities α2
min(x0) and  min(x0) in equation (40) are determined by carrying out the

minimization described in section 3. Using equations (28) and (25) for this case shows that
the values of α2

min(x0) and  min(x0) satisfy the equations

 2(x0) = 4a2
[
3
(
α2(x0) + x2

0

)− b2
]

(42)

and

α2(x0) = 1

µ 2(x0)

[
µ (x0)

2
coth

(
µ (x0)

2

)
− 1

]
(43)

for each value of x0. There are a number of problems encountered when equations (42) and (43)
are solved for a general value of µ [13]. However the approximate effective refractive index
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Figure 4. The approximate effective refractive index W(1)(x) in the limits µ → +∞ (solid
curve) and µ → 0+ (dotted curve) for the partial refractive index inhomogeneity function
V (x) = a4(x2 − b2)2 at various values of b with a = 1. At b = bc the stationary values at
x �= 0 of the µ → +∞ limit of W(1)(x) appear. For b < b̃c the minimum of the µ → +∞ limit
of W(1)(x) lies at x = 0 and for b > b̃c there are two minima at x = ±xstat �= 0. For a = 1,
bc ≈ 1.113 and b̃c ≈ 1.159.

can be found easily in the two limits µ → 0+ and +∞. The latter was shown in section 3 to
give the lowest-order propagation constant of the system. In the limitµ → 0+ the approximate
effective refractive index, W(1)(x), coincides with the partial refractive index inhomogeneity
function V (x) as shown in equation (35). In the limit µ → +∞, equation (43) becomes
α2(x0) = 1/ (2 (x0)), so that using equation (42) it can be seen that α2

min (x0) satisfies the
equation

3
(
α2

min(x0)
)3

+
(
3x2 − b2

)(
α2

min(x0)
)2 − 1

16a4
= 0 (44)

and that the expression for the approximate effective refractive index, in the limit µ → +∞,
is given by

lim
µ→+∞W

(1)(x) = Vα2
min(x)

(x) +
1

8α2
min(x)

. (45)

Although equation (44) can be solved analytically, we choose to solve it numerically by iteration
for each value of x. The approximate effective refractive index in the limit µ → +∞ obtained
using the numerical solution of equation (44) is plotted in figure 4 for various values of the
parameter b. The approximate effective refractive index in the limit µ → 0+ for the same
values of the parameter b is also plotted in figure 4.
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5. Estimation of the propagation constant of the lowest-order mode

It has been shown in section 3 that the minimum of the approximate effective refractive index,
W(1)(x), in the limit µ → +∞ gives an approximation to the propagation constant of the
lowest-order mode of a waveguiding system. It has also been shown that this approximation
is a lower bound for the actual propagation constant of the lowest-order mode of the system.

The approximation to the partial propagation constant of the lowest-order mode βx0
obtained from the variational calculation is obtained by minimizing with respect to x the
limit of the approximate effective refractive index as µ → +∞ as shown in equation (34).
Using this equation and the expression in equation (45), the value of βx (1)0 can be written as

β
x (1)
0 = min

x

{
Vα2(x) +

1

8α2

}
. (46)

The quantity in equation (46) which needs to be minimized is given by

Ṽ(x) = Vα2(x) +
1

8α2
= a4x4 + 2a4

(
3α2 − b2

)
x2 + a4

(
b4 + 3α4 − 2b2α2

)
+

1

8α2
(47)

where we have used the smeared version of the partial refractive index inhomogeneity function
V (x) = a4

(
x2 − b2

)2
given by equation (39).

Carrying out the minimization of Ṽ (x) shows that the minimum of Ṽ (x) occurs at either

x = 0 or x = ±xstat �= 0 (48)

where

xstat =
√
b2 − 3α2 =

√
b2 − 3

2 
. (49)

It is found that the value of Ṽ (x) at x = 0 is

Ṽ (0) = a4

(
b4 +

3

4 2
1

− b2

 1

)
+
 1

4
(50)

where  1 satisfies the equation

 3
1 + 4a4b2 1 − 6a4 = 0. (51)

It can also be readily seen that

Ṽ (±xstat) = a4

 2

(
2b2 − 3

2 2

)
+
 2

4
(52)

where  2 satisfies the equation

 3
2 − 8a4b2 2 + 12a4 = 0. (53)

Equation (51) has one real root given by

 ∗
1 = (3a4

)1/3{[(
1 + 64

243a
4b6
)1/2

+ 1
]1/3 − [(1 + 64

243a
4b6
)1/2 − 1

]1/3}
(54)

and two complex roots for all physical values of a and b. The two complex roots will be
ignored since they are unphysical. The value of Ṽ (x) at the local minimum at x = 0 is given
by

Ṽmin(0) = a4

(
b4 +

3

4 ∗2
1

− b2

 ∗
1

)
+
 ∗

1

4
(55)

with  ∗
1 given by equation (54).
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Equation (53) only has physically acceptable roots (i.e. roots which are real and positive)
for b > bc where

bc =
(

243

128a4

)1/6

. (56)

For a = 1, bc has the numerical value 1.113. This means that the minimum of Ṽ (x) occurs
at x = 0 for b < bc, as can be seen from the plots in figure 4, because the only physically
acceptable solution for the minimum occurs at x = 0.

For b > bc, equation (53) has two real roots, which give physically acceptable values
of the µ → +∞ limit of the approximate effective refractive index, W(1)(x). These values
correspond to the stationary values of Ṽ (x) which can be seen in figure 4 for b > bc. The real
root of equation (53) which corresponds to the local minima of Ṽ (x) is

 ∗
2 = 4

√
3

2
a2b cos

(
1

3
arccos

[
−
(
bc

b

)3
])

(57)

so that the value of Ṽ (x) at the local minima with x �= 0 (x = ±xstat) is given by

Ṽmin (±xstat) = a4

 ∗
2

(
2b2 − 3

2 ∗
2

)
+
 ∗

2

4
(58)

with  ∗
2 given by equation (57).

We can use equations (50) and (52) to solve Ṽ (0) = Ṽ (±xstat) numerically and we find
that the minimum of Ṽ (x) lies at x = 0 for b < b̃c and lies at x = ±xstat for b > b̃c, where b̃c

has the numerical value 1.159 when a = 1.
In summary, as b is increased from zero, the µ → +∞ limit of W1(x) (which is denoted

by Ṽ (x) and given by equation (47)) has a single minimum at x = 0 for b < bc. At b = bc

subsidiary minima of Ṽ (x) appear at x = ±xstat, so that for b > bc Ṽ (x) has three local
minima. At b = b̃c the minima at x = ±xstat have the same height as the minimum at x = 0
(i.e. Ṽ (0) = Ṽ (±xstat)). The minima at x = ±xstat are lower than the minimum at x = 0 for
b > b̃c. This behaviour is illustrated in figure 4. From this, the approximation to the partial
propagation constant of the lowest-order mode βx0 obtained by the variational calculation is

βx0 ≈
{
Ṽmin(0) for b < b̃c

Ṽmin (±xstat) for b > b̃c
(59)

with Ṽmin(0) and Ṽmin (±xstat) given by equations (55) and (58), respectively.
Using equation (16), it can be seen that the partial propagation constant of the lowest-

order mode given by equation (59) corresponds to a value of β0, the propagation constant of
the lowest-order mode of the system, given by

β0 ≈



k −  ∗

<

4
+
a4b2

 ∗
<

− ka4b4 − 3a4

4k ∗2
<

for b < b̃c

k −  ∗
>

4
− 2a4b2

 ∗
>

+
3a4

2k ∗2
>

for b > b̃c

(60)

where  ∗
< and  ∗

> are given by

 ∗
< =

(
3a4

k

)1/3


[(

1 +
64

243
k2a4b6

)1/2

+ 1

]1/3

−
[(

1 +
64

243
k2a4b6

)1/2

− 1

]1/3

 (61)
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Figure 5. The dimensionless approximate lowest-order mode propagation constant β0/k given by
equation (60) as a function of the dimensionless guide separation kb for a/k = 0.8, 0.9, 1, 1.1 and
1.2, respectively.

and

 ∗
> = 4

√
3

2
a2b cos

(
1

3
arccos

[
−9

8

√
3

2

1

ka2b3

])
. (62)

The critical value of b, b̃c, can be calculated numerically in the same way as described above.
The value of b̃c for the (arbitrary) case ofa = k is b̃c ≈ 1.159k−1. The approximate propagation
constant of the lowest-order mode is plotted in figure 5 as a function of the dimensionless guide
separation kb for a number of values for the dimensionless potential parameter a/k.

The expression for the approximate propagation constant of the lowest-order mode
obtained by the previous variational calculation by Constantinou and Jones [12] (which was
mentioned at the end of section 3) and valid in the strong-coupling limit is

βC−J
0 ≈ k − c

2
+

[
a4b2

c2
+

1

4

]
c − ka4b4 − 3a4

4kc2
(63)

with the value of c given by

c =
(

3a4

2k

)1/3




(1 +

(
2

3

)5

k2a4b6

)1/2

+ 1




1/3

−

(1 +

(
2

3

)5

k2a4b6

)1/2

− 1




1/3

 .

(64)

The expression given by equation (63) is compared with the result of the variational calculation
described in this paper (equation (60)) in figure 6.

The use of a variational technique implies that the true result for the lowest-order mode
propagation constant always lies above the approximate value. Figure 6 shows that since our
present result lies above the previous result of Constantinou and Jones it must lie closer to the
exact value of β0. Strong coupling between the guides occurs when there is significant overlap
of the fields centred on each guide. This physically occurs when the guides are close together
and from equation (10) will occur when kb < 1, when the refractive index has a shallow
minimum at x = 0. Conversely, the guides are weakly coupled if the overlap of fields centred
in the individual guides is very small, and this corresponds in our model to kb > 1 when the
refractive index has a very deep minimum at x = 0. The intermediate regime, previously
inaccessible, occurs when kb ∼ 1. The previous variational result due to Constantinou and
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Figure 6. The dimensionless approximate lowest-order
mode propagation constantβ0/k given by equation (60) as
a function of the dimensionless guide separation kb with
a = k, compared with the result obtained by Constantinou
and Jones [12] and given by equation (63).

Jones was only valid in the strong-coupling limit, but the new result is expected to be valid for
both strong and weak coupling of the waveguides [14]. In figure 6 we see that the propagation
constant β0 as a function of kb changes its shape when kb ≈ 1.159. Although the apparent
discontinuity in the derivative of β0 is a consequence of the mathematical model we have
used, nevertheless it is gratifying to see this anomaly occurring at the value of b at which we
expect that we are leaving the strong-coupling regime and entering the previously unexplored
intermediate regime.

The authors have also used a numerical technique (to be published) to calculate values for
the propagation constants and field profiles of the waveguiding system for comparison with the
results of the variational technique. Preliminary results for β0/k indicate excellent agreement
with the variational calculation in the strong- and weak-coupling regions (kb � 0.5 and
kb � 1.5) and our preliminary results indicate a discrepancy of less than ∼6%. The numerical
results in the intermediate regime are qualitatively very similar to the results of the variational
calculation, but differ more significantly in their numerical values. An anomaly of the form seen
here in figures 5 and 6 is also present in the numerical work. As expected from the variational
procedure the numerical result always lies above the analytic variational result. A complete
analysis and detailed comparison with this work is in preparation, but as yet incomplete.

6. Estimation of the field profile of the lowest-order mode

The trial partial refractive index inhomogeneity function used in the variational procedure
described in section 3 will now be used to calculate approximate expressions for the lowest-
order mode field profile of the parallel coupled waveguide system. The method used to do
this follows that used by Constantinou and Jones [12], in which an approximate closed form
expression for the propagator of the waveguide system is obtained.
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It is also possible to derive the results obtained in section 3 using a local trial optical
action [13]

Ax0
 =

∫ µ

0
dζ
[

1
2 ẋ

2 + 1
2 

2(x0)
(
x − x0

)2]
(65)

which is that of a system with a quadratic partial refractive index inhomogeneity function
with a curvature  (x0) centred around some point x0 (using units where k = 1). This trial
optical action will be the starting point for the calculation of an approximate expression for
the propagator Kx(xb, zb; xa, za).

For the case where the partial refractive index inhomogeneity function n′
x(x, z) is

independent of z, an imaginary propagation distance can be introduced as before via zb−za =
−iµ so that the propagator given by equation (15) becomes

Kx(xb,−iµ; xa, 0) =
∞∑
n=0

ϕxn(xb) ϕ
x∗
n (xa) exp

{−µβxn} (66)

which latter is analogous to an expression for the density matrix in statistical mechanics [16].
From this expression the lowest-order mode propagation constant βx0 can be obtained from
an equation which is analogous to the well known Feynman–Kac formula in quantum
mechanics [17]. It is also possible to obtain the field profile of the lowest-order mode from
the expansion of the propagator given by equation (66) by taking the limit µ → +∞ [16]:

lim
µ→+∞ Kx(xb,−iµ; xa, 0) = ϕx0 (xb) ϕ

x∗
0 (xa) exp

{−µβx0 } . (67)

The partial refractive index inhomogeneity function associated with the optical action
of equation (65) (the local trial partial refractive index inhomogeneity function) is
1
2 

2(x0) (x − x0)
2. The local trial propagator is now defined as the propagator associated

with the local trial partial refractive index inhomogeneity function and is

Kx0
x  (xb, zb; xa, za) =

∫ (xb,zb)

(xa,za)

Dx exp
{
iAx0
 

}
(68)

where

Ax0
 =

∫ zb

za

[
1
2 ẋ

2 − 1
2 

2(x0) (x − x0)
2
]

dz. (69)

The required propagator is the propagator associated with the partial refractive index
inhomogeneity function V (x) given by

Kx(xb, zb; xa, za) =
∫ (xb,zb)

(xa,za)

Dx exp {iA} (70)

where

A =
∫ zb

za

[
1
2 ẋ

2 − V (x)] dz (71)

which can be written as [9, 13]

Kx = Kx0
x  

〈
exp

{
i
[A − Ax0

 

]}〉
Ax0 

(72)

using the trial propagator given by equation (68). The averaging is defined by

〈O〉Ax0 =
∫ (xb,zb)
(xa,za)

Dx O exp
{
iAx0
 

}
∫ (xb,zb)
(xa,za)

Dx exp
{
iAx0
 

} (73)

and can be thought of as an average over paths x of the functional O with a weight functional
exp

{
iAx0
 

}
, and is defined in such a way that 〈1〉Ax0 = 1.
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In a variational calculation, the expectation value on the right-hand side of equation (72)
can be approximated by its first cumulant as [13, 18]〈

exp
{
i
[A − Ax0

 

]} 〉
Ax0 

≈ exp
{
i
〈A − Ax0

 

〉
Ax0 
}

(74)

but the approximation on the right-hand side of equation (74) is not necessarily smaller than
the left-hand side because the measure of integration in the average defined by equation (73)
is no longer positive definite [13]. This means that the propagator Kx(xb, zb; xa, za) given by
equation (70) can be approximated by

Kx ≈ Kx0
x  exp

{
i
〈A − Ax0

 

〉
Ax0 
}
. (75)

The path integral in the definition of the trial propagator Kx0
x  (xb, zb; xa, za) in

equation (68) can be easily evaluated to give

Kx0
x  (xb, zb; xa, za) =

√
 (x0)

2π i sin [ (x0) (zb − za)] exp

{
i (x0)

2 sin [ (x0) (zb − za)]
×[((xa − x0

)2
+
(
xb − x0

)2)
cos
[
 (x0)

(
zb − za

)]
−2
(
xa − x0

)(
xb − x0

)]}
. (76)

The expectation value on the right-hand side of equation (75) is

〈A − Ax0
 

〉
Ax0 

=
〈 ∫ zb

za

[
1
2 

2(x0) (x − x0)
2 − V (x)] dz

〉
Ax0 
. (77)

If the partial refractive index inhomogeneity function V (x) is of the form

V (x) =
N∑
n=0

Vnx
n (78)

as is the case for the partial refractive index inhomogeneity function given by equation (37), it
may be re-expanded around the point x0 as [13]

V (x) =
N∑
n=0

Vn

n∑
k=0

n!

k! (n− k)! x
n−k
0 (x − x0)

k . (79)

By doing this, the expectation value given by equation (77) can be written as

〈A − Ax0
 

〉
Ax0 

=
∫ zb

za

[
1

2
 2(x0)

〈
y2
〉
Ãx0 

−
N∑
n=0

Vn

n∑
k=0

n!

k! (n− k)! x
n−k
0

〈
yk
〉
Ãx0 

]
dz (80)

where the y-variable is defined by y = x − x0, and the averaging on the right-hand side is
defined by

〈O〉Ãx0 =
∫ (yb,zb)
(ya,za)

Dy O exp
{
i
∫ zb
za

[
1
2 ẏ

2 − 1
2 

2(x0) y
2
]

dz
}

∫ (yb,zb)
(ya,za)

Dy exp
{
i
∫ zb
za

[
1
2 ẏ

2 − 1
2 

2(x0) y2
]

dz
} (81)

where ya = xa − x0 and yb = xb − x0. The expectation values on the right-hand side of
equation (80),

〈
yk
〉
Ãx0 

, can be calculated using the generating functional ( given by [12, 13]

( ≡
〈

exp

{
i
∫ zb

za

dz f (z) y(z)

}〉
Ãx0 
. (82)
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The path integrals in the definition of the characteristic functional can be evaluated [9] and we
find that

( = exp

{
i

sin [ (x0) (zb − za)]
[
(xb − x0)

∫ zb

za

f (z) sin [ (x0) (z− za)] dz

+ (xa − x0)

∫ zb

za

f (z) sin [ (x0) (zb − z)] dz

+
1

2 (x0)

∫ zb

za

∫ zb

za

g(z, u)f (z)f (u) du dz

]}
(83)

where

g(z, u) =
{

− sin [ (x0) (u− za)] sin [ (x0) (zb − z)] for z > u

− sin [ (x0) (zb − u)] sin [ (x0) (z− za)] for z < u.
(84)

Using this generating functional the n-point correlation function can be obtained by
carrying out n functional derivatives with respect to the function f (z) [13]:

〈y(z1) y(z2) . . . y(zn)〉Ãx0 = 1

in
δn

δf (z1) δf (z2) . . . δf (zn)
(

∣∣∣∣
f (z)=0

. (85)

For the case of the partial refractive index inhomogeneity function V (x) given by
equation (37), the expectation value in equation (80) becomes

〈A − Ax0
 

〉
Ax0 

=
∫ zb

za

[
1
2 

2(x0)
〈
y2(z)

〉
Ãx0 

− a4b4 − a4x2
0

(
x2

0 − 2b2
)

−4a4x0
(
x2

0 − b2
) 〈y(z)〉Ãx0 − 2a4

(
3x2

0 − b2
)〈
y2(z)

〉
Ãx0 

−4a4x0
〈
y3(z)

〉
Ãx0 

− a4
〈
y4(z)

〉
Ãx0 
]

dz. (86)

Each of the expectation values on the right-hand side of equation (86) can be calculated
using the generating functional given by equation (82) as described above, and the integration
with respect to z can be easily carried out. An approximate expression for the propagator
Kx(xb, zb; xa, za) is therefore obtained by combining the resulting expression for

〈A − Ax0
 

〉
Ax0 

with the expression for the local trial propagator Kx0
x  (xb, zb; xa, za) given by equation (76).

By writing the approximate expression for the propagator in terms of −iµ = zb − za and then
using the expression in equation (67) we obtain approximate expressions for the lowest-order
mode profile and partial propagation constant given by

ϕx0 (x) ≈
(
 

π

)1/4

exp

{
−a

4b2

2 2
− 1

8
+

9a4

16 3
+

3a4x2
0

2 2

}

× exp

{
4a4x0

 

[
x2

0 − b2 − 1

 

]
(x − x0)

+

[
a4b2

 
−  

4
− 3a4

4 2
− 3a4x2

0

 

]
(x − x0)

2

−4a4x0

3 
(x − x0)

3 − a4

4 
(x − x0)

4

}
(87)

and

βx0 ≈ a4

(
b4 +

3

4 2
− b2

 
+ x2

0

[
x2

0 − 2b2 +
3

 

])
+
 

4
(88)
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Figure 7. The (unnormalized) dimensionless approximate lowest-order mode field profile
ϕ0<(x)/

√
k given by equation (91) as a function of the dimensionless position kx for various

values of the dimensionless guide separation kb with a = k.

respectively. It has been found that the values of  and x0 which provide the best bound for
the lowest-order propagation constant depend on the value of the parameter b with

 =  ∗
< and x0 = 0 for b < b̃c (89)

 =  ∗
> and x0 = ±

√
b2 − 3

2 ∗
>

for b > b̃c. (90)

Equation (88) provides the same approximation for the propagation constant of the lowest-order
mode as equation (60) for the cases given by equations (89) and (90).

For values of b < b̃c, equation (87) provides the approximation

ϕ0<(x) ≈
(
k ∗

<

π

)1/4

exp

{
− a

4b2

2 ∗2
<

− 1

8
+

9a4

16k ∗3
<

}

× exp

{[
a4b2k

 ∗
<

− k ∗
<

4
− 3a4

4 ∗2
<

]
x2 − a4k

4 ∗
<

x4

}
(91)

for the field profile of the lowest-order mode. The field profile given by equation (91) is
plotted in figure 7 as a function of the dimensionless position kx for a number of values of the
dimensionless guide separation kb.

For values of b > b̃c, equation (87) provides the approximation

ϕ>±(x) ≈
(
k ∗

>

π

)1/4

exp

{
− 33a4

16k ∗3
>

− 37a4b2

4 ∗2
>

+
7a4b4k

 ∗
>

+
1

4
− b2k ∗

>

4

}

× exp

{
∓
[

10a4

 ∗2
>

+
a4b2k

 ∗
>

− k ∗
>

2

](
b2 − 3

2k ∗
>

)1/2

x
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Figure 8. The (unnormalized) symmetric combination (ϕ>−(x) + ϕ>+(x)) /
√
k of the (normalized)

dimensionless approximate degenerate mode field profiles ϕ>+(x)/
√
k and ϕ>−(x)/

√
k given by

equation (92) as a function of the dimensionless position kx for various values of the dimensionless
guide separation kb with a = k.

+

[
a4b2k

2 ∗
>

− k ∗
>

4

]
x2 ∓ a4k

3 ∗
>

(
b2 − 3

2k ∗
>

)1/2

x3 − a4k

4 ∗
>

x4

}
(92)

which are the degenerate field profiles corresponding to the minima in the µ → +∞ limit of
the approximate effective refractive index shown in figure 4. These minima occur at

x = ±
√
b2 − 3

2k ∗
>

. (93)

The field profile of the lowest-order mode in this case is given by the symmetric combination
of ϕ>−(x) and ϕ>+(x):

ϕ0>(x) = 1

N
{ϕ>−(x) + ϕ>+(x)} (94)

where N is a normalization factor. The symmetric combination of the normalized versions
of the degenerate field profiles ϕ>−(x) and ϕ>+(x) is plotted in figure 8 as a function of the
dimensionless position kx for a number of values of the dimensionless guide separation kb.

Figure 7 shows the behaviour of the lowest-order mode field profile in the strong-coupling
limit and is in qualitative agreement with the results of the previous variational calculation
by Constantinou and Jones. Figure 8 shows the behaviour in the weak-coupling limit, which
is a new result arising from the application of a variational procedure to the parallel coupled
waveguide system. Figures 7 and 8 display the behaviour of the lowest-order mode field profile
which is physically expected. In the strong-coupling limit, when the separation of the guides
is small compared with their width, the field profile is peaked at x = 0 between the two guides,
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as shown in figure 7. As the coupling between the guides becomes weaker, the field profile is
peaked at positions close to the centres of each individual guide. These profiles are consistent
with the comments made at the end of section 5. The fact that the maxima of the field profile
do not occur exactly at the centres of the two guides is due to a small overlap between the
guides, indicating that the starting point for the coupled mode theory is not valid [2, 8].

It has been pointed out in [12] that the model refractive index shown in figure 3 can be
used to model the refractive index of the parallel waveguide system provided that the mode
fields in the regions where the model refractive index is negative (and therefore unphysical)
are negligible. This assumption must be checked a posteriori, and it can be seen to be true
from the field profiles shown in figures 7 and 8.

Preliminary data from the numerical work referred to in section 5 indicate close agreement
with the field profile of the lowest-order mode in the strong-coupling limit although there are
some qualitative differences apparent in the weak-coupling results, which we ascribe to the
relative insensitivity of the associated propagation constant to the choice of the variational trial
function. In the physically relevant region within and between the two guides, the discrepancy
between the result shown in figure 7 for kb = 0.1 and the corresponding numerical result
appears to be no greater than ∼0.4%. In general, estimation of the field profiles of the higher-
order modes is a difficult problem using the variational method and requires a major extension
of this work. Some numerical data on the first-order mode are in preparation and will be
published in the future.

7. Estimation of the propagation constants of the higher-order modes of the system and
the beat length

As mentioned in section 1, the close proximity of the two parallel waveguides in the system
gives rise to a periodic variation in intensity along each guide. The distance over which a
period of this variation occurs is the beat length of the system, denoted by ,zbeat using the
coordinate axes shown in figure 2. The beat length ,zbeat is given by [8, 12]

,zbeat = 2π

β0 − β1
(95)

where β0 is the propagation constant of the lowest-order mode and β1 is the propagation
constant of the first-order mode. This means that it is necessary to calculate (approximate)
expressions for the propagation constants of the higher-order modes in addition to the lowest-
order mode.

A calculation of the propagation constant of the first-order mode was carried out using a
variational technique by Constantinou and Jones [12]. They found that the difference between
the propagation constants of the lowest-order mode and the first-order mode, ,β = β0 − β1,
was determined by the trial curvature c given by equation (64). However, Feynman and
Kleinert [14] have shown that for the case of the quantum mechanical double-well potential
the trial frequency in their variational procedure only approximates the difference between the
first excited-state energy and the ground-state energy for very strong coupling between the two
wells of the potential (i.e. when the separation of the two wells is very small). This is due to
the fact that the approximation described in section 3 lacks the ability to describe tunnelling
when the waveguides are weakly coupled [14]. It is clear from this that another method of
obtaining the quantity ,β is required to calculate the beat length when the waveguides are
more weakly coupled.

Kleinert [13] describes a method of calculating approximate expressions for the excited
energy levels of a quantum mechanical system based on the Feynman–Kleinert variational
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procedure that was described in section 3. In this section Kleinert’s method will be formulated
in terms of the quantities of the optical problem and then applied to the parallel coupled
waveguide system in order to calculate the propagation constants of the higher-order modes
of the system.

The method described by Kleinert [13] to calculate the excited energy levels consists of
calculating an optimized expectation value of the propagator between the mode field profiles of
the system described by the trial propagator given by equation (68). This method is expected
to provide a good approximation to the excited energy levels of a quantum mechanical system
if the potential describing the system is similar to the harmonic oscillator potential [13].

The first step in Kleinert’s method is to form the projections

Zn(x0) ≡
∫

dxb dxa ψ
x∗
 n(xb − x0)Kx(xb,−iµ; xa, 0) ψx n(xa − x0) (96)

where Kx(xb, zb − za; xa, 0) is the propagator of the waveguiding system of interest and
ψx n(x − x0) is the partial field profile of the nth-order mode of the waveguiding system with
the trial partial refractive index inhomogeneity function. The imaginary propagation distance
propagator, Kx(xb,−iµ; xa, 0), is given by

Kx(xb,−iµ; xa, 0) =
∫ (xb,µ)

(xa,0)
Dx e−A (97)

where A is the optical Euclidean action for the waveguiding system given by

A[x] =
∫ µ

0
dζ
[

1
2 ẋ

2 + V (x)
]

(98)

so that equation (96) can be written as

Zn(x0) =
∫

dxb dxa ψ
x∗
 n(xb − x0)

∫ (xb,µ)

(xa,0)
Dx e−A ψx n(xa − x0) . (99)

In a similar way to that described in section 5, the expression for Zn in equation (99) can
be written in terms of an average as

Zn =
(∫

dxb dxa ψ
x∗
 n(xb − x0)

∫ (xb,µ)

(xa,0)
Dx e−Ax0 ψx n(xa − x0)

)〈
e−(A−Ax0 )

〉
 n

(100)

where the expectation value is defined by

〈O〉 n ≡
∫

dxb dxa ψx∗ n(xb − x0)
∫ (xb,µ)
(xa,0)

Dx O e−Ax0 ψx n(xa − x0)∫
dxb dxa ψx∗ n(xb − x0)

∫ (xb,µ)
(xa,0)

Dx e−Ax0 ψx n(xa − x0)
(101)

and Ax0
 is the optical Euclidean action associated with the trial partial refractive index

inhomogeneity function and is given by

Ax0
 =

∫ µ

0
dζ
[

1
2 ẋ

2 + 1
2 

2
(
x − x0

)2]
. (102)

The term multiplying the expectation value on the right-hand side of equation (100) is the
contribution of the nth-order mode of the waveguiding system with the trial partial refractive
index inhomogeneity function to the trial optical partition function [13] and can be shown to
be equal to exp{−µ (n + 1

2 )}, so that equation (100) becomes

Zn = exp
{− µ (n + 1

2

)} 〈
exp

{− (A − Ax0
 

)}〉
 n
. (103)

The expectation value on the right-hand side of equation (103) can be approximated in the
same way as described in section 5, and equation (103) then becomes

Zn ≈ exp
{− µ (n + 1

2

)}
exp
{− 〈A − Ax0

 

〉
 n

}
. (104)
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We now assume once more that the partial refractive index inhomogeneity function of
interest V (x) is of the form

V (x) =
N∑
k=0

Vk x
2k (105)

so that the difference in optical Euclidean actions A − Ax0
 can be written as

A − Ax0
 =

∫ µ

0
dζ

[ N∑
k=0

Vk x
2k − 1

2 
2 (x − x0)

2

]
. (106)

As described by Kleinert [13], the calculation of the expectation value of A−Ax0
 is simplified

if the optimal value of x0 (determined in the way described in section 5) is at the origin. This
was found in section 5 to be true for the case where the waveguides are strongly coupled. For
this case the expression in equation (106) becomes

A − Ax0=0
 =

∫ µ

0
dζ

[ N∑
k=0

Vk x
2k − 1

2 
2x2

]
. (107)

The expectation value of A − Ax0=0
 is given by

〈A − Ax0=0
 

〉
 n

=
∫ µ

0
dζ

[ N∑
k=0

Vk
〈
x2k
〉
 n

− 1
2 

2
〈
x2
〉
 n

]
(108)

with the expectation values on the right-hand side,
〈
x2k
〉
 n

, being given by [13]

〈
x2k
〉
 n

= 1

 k
n2k (109)

where

n2 = n + 1
2

n4 = 3
2

(
n2 + n + 1

2

)
n6 = 5

4

(
2n3 + 3n2 + 4n + 3

2

)
n8 = 1

16

(
70n4 + 140n3 + 344n2 + 280n + 105

)
etc and n0 = 1 (so that 〈1〉 n = 1), where n is an integer labelling the mode of the
trial waveguiding system used in the expectation value in equation (109) (n can take values
0, 1, 2, . . .). Thus equation (108) becomes

〈A − Ax0=0
 

〉
 n

=
[ N∑
k=0

Vk
1

 k
n2k − 1

2
 n2

]
µ. (110)

The resulting expression for Zn is therefore

Zn ≈ exp

{
− µ

[
1

2
 n2 +

N∑
k=0

Vk
1

 k
n2k

]}
. (111)

By analogy with Kleinert [13], we now define a quantity Wn defined by Zn = exp {−µWn},
so thatWn is given by

Wn = 1

2
 n2 +

N∑
k=0

Vk
1

 k
n2k. (112)

In the limit µ → +∞, a minimization of Wn with respect to the parameters x0 and
 ≡  (x0) yields an approximation to the partial propagation constant βxn of the nth-order
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mode of the waveguiding system [13]. This approximation to βxn will be denoted by βx (1)n .
The required optimization is carried out by finding the value of the trial curvature  which
minimizes theWn.

This method can now be applied to the waveguiding system of interest which is the parallel
coupled waveguide system and has a partial refractive index inhomogeneity function given by
equation (37). For this system,Wn of equation (112) becomes

Wn = a4b4 − 2a4b2

 
n2 +

 

2
n2 +

a4

 2
n4. (113)

Minimizing this expression with respect to  shows that the minimum value of Wn, which
approximates the partial propagation constant of the nth-order mode of the parallel coupled
waveguide system, occurs when  satisfies the equation

n2 
3 + 4a4b2n2 − 4a4n4 = 0. (114)

The real root of this equation is denoted by  ̃n and given by

 ̃n =
(

2a4n4

n2

)1/3




(1 +

(
b

bn

)6
)1/2

+ 1




1/3

−

(1 +

(
b

bn

)6
)1/2

− 1




1/3

 (115)

where

bn =
(

27n2
4

16a4n2
2

)1/6

. (116)

This means that the approximation for the partial propagation constant of the nth-order mode
is given by

βx (1)n = a4b4 − 2a4b2

 ̃n
n2 +

 ̃n

2
n2 +

a4

 ̃2
n

n4. (117)

Using equations (117) and (16), the approximation to the propagation constant of the
first-order mode of the parallel coupled waveguide system is given by

β1 ≈ k − 3 ̃1

4
+

3a4b2

 ̃1

− ka4b4 − 15a4

4k ̃2
1

(118)

where

 ̃1 =
(

5a4

k

)1/3


[(

1 +
64

675
k2a4b6

)1/2

+ 1

]1/3

−
[(

1 +
64

675
k2a4b6

)1/2

− 1

]1/3

 .

(119)

This approximation for the propagation constant of the first-order mode is only valid when
the waveguides are strongly coupled since the optimal value of x0 used in this calculation
was x0 = 0. Using equation (117) it is also possible to obtain an approximate expression for
the lowest-order mode propagation constant. This approximate expression is the same as that
obtained in section 5 for strongly coupled waveguides and given by equation (60) with b < b̃c.
The approximation for the beat length of the parallel coupled waveguide system is obtained by
inserting the expressions given by equations (60) and (118) into (95). The beat length obtained
in this way is plotted in figure 9 as a function of the dimensionless guide separation kb. The
result obtained by Constantinou and Jones [12] for the propagation constant of the first-order
mode is

βC−J
1 ≈ k +

[
a4b2

c2
− 5

4

]
c − ka4b4 − 3a4

4kc2
(120)
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Figure 9. The dimensionless approximate beat length k ,zbeat of the parallel coupled waveguide
system as a function of the dimensionless guide separation kbwith a = k, compared with the result
obtained by Constantinou and Jones [12] and given by equation (121).

where c is given by equation (64). From equations (63) and (120), it can be seen that the
approximation obtained by Constantinou and Jones for the beat length of the parallel coupled
waveguide system is

,zC–J
beat = 2π

βC–J
0 − βC–J

1

≈ 2π

c
(121)

with c given by equation (64). The expression in equation (121) is also plotted in figure 9 as
a function of the dimensionless guide separation kb.

Figure 9 shows that the new approximate beat length increases faster with increasing
guide separation than does the previous result of Constantinou and Jones. Other analytical
calculations using the coupled mode theory obtain expressions for the beat length which
increase at least exponentially with the separation of the waveguides [2]. It is therefore clear that
the new approximate beat length is in better agreement with these results than is the approximate
beat length obtained by Constantinou and Jones. The calculation of the propagation constant
of the first-order mode for the case where the waveguides are weakly coupled (i.e. when the
optimal value of x0 does not lie at the origin, as was described in section 5) is more complicated
and will not be included here. This makes a detailed comparison with the results of the other
analytical calculations not meaningful.

As mentioned at the end of section 5, estimates of the propagation constants of the
waveguiding system can be calculated numerically. The beat length calculated from the
numerical propagation constants of the lowest-order and first-order modes agrees well with
the analytical approximation of the beat length for the case where the waveguides are strongly
coupled. The discrepancy between the numerical and analytical results for the beat length
in the region 0 < kb < 1.1 is less than ∼3%, indicating the high accuracy of the analytical
approximations calculated in this paper.

8. Conclusions

The path integral approach to the study of optical propagation presents an exciting way of
describing many problems of propagation in guiding systems, in an intuitively appealing way
by providing a global picture of propagation.

The new variational procedure is shown to provide a better variational bound for the
lowest-order propagation constant than the result of the calculation in [12]. It predicts a definite
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distinction between the cases of strongly and weakly coupled waveguides and is able to make
new predictions about the intermediate regime, which has proved previously inaccessible. The
approximate expressions for the lowest-order mode propagation constant obtained agree with
the numerical result for this quantity to a very high degree, except in the region where the
propagation constant behaves in an unphysical way.

The field profile of the lowest-order mode obtained from the variational method agrees
approximately with that obtained from a previous variational calculation in the strong-coupling
limit and provides a new result in the weak-coupling limit. These field profiles are found to be
more physically appealing than those calculated previously using a variational procedure [12].

The expression for the beat length obtained for the case where the waveguides are strongly
coupled is in better agreement with other analytical calculations and the numerical result than
is the result of the previous variational calculation by Constantinou and Jones.

The new calculation is also able to make predictions in the previously inaccessible
intermediate region between strong and weak coupling. The approximate results calculated in
this paper are important because of the need for analytical results which can be used to guide
experimental and numerical work on the design of integrated optical devices.

Further work on this problem is required in order to make a detailed comparison of the
results of this variational calculation with other analytical and numerical calculations. It would
also be useful to make a comparison between the analytical work and a numerical scheme for
the evaluation of the path integral for the optical propagator describing the system.
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